Optimal Calibration in Immunoassay and Inference on the Coefficient of Variation
نویسنده
چکیده
This thesis examines and develops statistical methods for design and analysis with applications in immunoassay and other analytical techniques. In immunoassay, concentrations of components in clinical samples are measured using antibodies. The responses obtained are related to the concentrations in the samples. The relationship between response and concentration is established by fitting a calibration curve to responses of samples with known concentrations, called calibrators or standards. The concentrations in the clinical samples are estimated, through the calibration curve, by inverse prediction. The optimal choice of calibrator concentrations is dependent on the true relationship between response and concentration. A locally optimal design is conditioned on a given true relationship. This thesis presents a novel method that accounts for the variation in the true relationships by considering unconditional variances and expected values. For immunoassay, it is suggested that the average coefficient of variation in inverse predictions be minimised. In immunoassay, the coefficient of variation is the most common measure of variability. Several clinical samples or calibrators may share the same coefficient of variation, although they have different expected values. It is shown here that this phenomenon can be a consequence of a random variation in the dispensed volumes, and that inverse regression is appropriate when the random variation is in concentration rather than in response. An estimator of a common coefficient of variation that is shared by several clinical samples is proposed, and inferential methods are developed for common coefficients of variation in normally distributed data. These methods are based on McKay’s chi-square approximation for the coefficient of variation. This study proves that McKay’s approximation is noncentral beta distributed, and that it is asymptotically normal with mean n 1 and variance slightly smaller than 2(n 1).
منابع مشابه
Estimating the Optimal Dosage of Sodium Valproate in Idiopathic Generalized Epilepsy with Adaptive Neuro-Fuzzy Inference System
Introduction: Epilepsy is a clinical syndrome in which seizures have a tendency to recur. Sodium valproate is the most effective drug in the treatment of all types of generalized seizures. Finding the optimal dosage (the lowest effective dose) of sodium valproate is a real challenge to all neurologists. In this study, a new approach based on Adaptive Neuro-Fuzzy Inference System (ANFIS) was pre...
متن کاملOptimal Relief Order Quantity under Stochastic Demand and Lead-time
In this paper, a newsboy model is developed under uniformly distributed lead-time and demand that is an appropriate assumption in obtaining optimal relief inventory of humanitarian disasters. It is noteworthy that limited historical data are in hand on relief operations. Hence, analytical and approximate solutions for optimal relief order quantity were derived. The effect of lead-time uncertai...
متن کاملOptimal flexible capacity in newsboy problem under stochastic demand and lead-time
In this paper, we consider a newsvendor who is going to invest on dedicated or flexible capacity, our goal is to find the optimal investment policy to maximize total profit while the newsvendor faces uncertainty in lead time and demand simultaneously. As highlighted in literature, demand is stochastic, while lead time is constant. However, in reality lead time uncertainty decreases newsvendor's...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملAdaptive neuro-fuzzy inference system (ANFIS) applied for spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
The UV-spectrophotometric method of analysis was proposed for simultaneous determination of fluoxetine (FLX) and sertraline (SRT). Considering the strong spectral overlap between UV-Vis spectra of these compounds, a previous separation should be carried out in order to determine them by conventional spectrophotometric techniques. Here, full-spectrum multivariate calibrations adaptive neuro-fuzz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008